首页 > 新闻中心 > 科研进展
宁波材料所在钙钛矿电池稳定性方面取得重要进展
作者:,日期:2018-09-30

  钙钛矿太阳能电池成本低,效率高,被认为是最有希望实现低成本发电的光伏技术之一。现在高效率的钙钛矿电池普遍采用高温烧结的TiO2,限制了其在柔性器件中的应用,而且TiO2在光的作用下可以催化分解钙钛矿,严重影响电池的稳定性。目前钙钛矿电池的效率已经超过23%,稳定性问题已经成为限制其走向实用化的最大瓶颈。

  宁波材料所方俊锋研究员围绕上述问题展开深入研究,并取得重要进展。首先,针对TiO2需要高温处理的问题,提出采用极性富勒烯(C60 pyrrolidine tris-acid,CPTA)来替代TiO2作为电子传输材料,实现了柔性钙钛矿电池效率>17%(Adv. Energy Mater. 2017, 7, 1701144);在此基础上,进一步在界面处引入PbI2作为晶核,通过界面诱导成核优化钙钛矿晶体生长,使器件效率提升至20.2%(Adv. Funct. Mater. 2018, 28, 1706317)。同时,在空穴传输材料方面,通过对聚电解质传输材料抗衡离子的选择(P3CT-N),有效抑制了聚电解质的过度聚集,从而改善了钙钛矿薄膜在界面上的生长,实现了反向p-i-n钙钛矿电池效率>19%,柔性器件效率也达到18%,1cm*1cm的大面积器件效率>15%(ACS Appl. Mater. Interfaces 2017, 9, 31357; Advanced Science, 2018, 1800159)。

  在上述高效p-i-n钙钛矿电池的基础上,最近,该研究团队在钙钛矿电池的工作稳定性方面进一步取得重要进展。太阳能电池在实际发电(光照且外加负载)过程中的连续功率输出是衡量其能否实用化的核心指标。在实际工作中,钙钛矿薄膜内部的离子会沿晶界发生定向迁移,这是造成钙钛矿电池效率衰退的重要原因。针对此问题,该团队率先提出原位交联的策略来制备钙钛矿电池。在钙钛矿薄膜中引入一种可交联的液体有机小分子(trimethylolpropane triacrylate, TMTA,图1a),借助TMTA与晶界处PbI2的配位作用,使TMTA化学“锚钉”在钙钛矿晶界处,有效钝化晶界缺陷,实现>20%的器件效率;更重要的是,经过进一步加热处理,TMTA能够发生原位交联(图1b),在晶界处形成稳定的交联聚合物网络(图1c),使钙钛矿薄膜的离子迁移活化能由0.21eV提升至0.48eV,从而有效抑制离子沿晶界的迁移。基于此策略的钙钛矿电池在全光谱标准太阳光下经过400小时的连续最大功率输出(负载0.84V)仍能维持初始效率的80%(图2),相对于传统的钙钛矿电池,其工作稳定性(T80)提升了590倍。该工作首次实现了甲胺铅碘钙钛矿电池在标准太阳光(Xe灯)、全光谱(不滤光)下>200小时的长期工作稳定性,为高效稳定钙钛矿电池的制备提供了全新的思路与方法。同时,钙钛矿电池的空气稳定性(湿度45%-60%)和热稳定性(85℃)也有明显提升,经过>1000小时老化后仍能维持初始效率(或post burn-in效率)的90%以上。相关工作以“In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells” 为题发表在Nature Communications上(Nat. Commun. 2018, 9, 3806;论文链接:https://www.nature.com/articles/s41467-018-06204-2)。方俊锋研究员为该论文的唯一通讯作者,李晓冬博士为第一作者。

  上述工作得到中国科学院前沿科学重点研究计划(CAS QYZDB-SSW-JSC047)、国家自然科学基金(51773213,61474125)及博士后基金(2017M610380)等项目的支持。

 

图1 (a) TMTA化学结构;(b) TMTA加热交联;(c) TMTA在钙钛矿薄膜中原位交联示意图

图2 基于原位交联策略的钙钛矿电池的连续功率输出(标准Xe灯光源,全光谱,恒定0.84V负载)

                                                               (新能源所 李晓冬)